Fresenius-Fachtagung "Störfallrecht in der Praxis", 10.-11.10.2017

SICHERHEITSABSTAND HALTEN- VON WEM ODER WAS UND WIE VIEL?

Hans-Joachim Uth, Berlin

Übersicht

- Kleine Kulturgeschichte des Sicherheitsabstands (Angemessener Abstand, Achtungsabstand, Sicherheitsabstand)
- Praxis der Abstandsbestimmung (Varianz der Einflussgrößen bei der Einzelfallbetrachtung)
- Seveso-Europa der unterschiedlichen Maße und Gewichte (Verletzlichkeit von Schutzobjekten)
- Da geht noch was- die Einzelfallbetrachtung

ABSTANDSDEFINITIONEN

Kleine Kulturgeschichte des Sicherheitsabstands

- Angemessener Abstand nach Art. 12 Seveso II Richtlinie
- •Sicherheitsabstand nach Art. 13 Seveso III Richtlinie
- Achtungsabstand nach KAS 18
- Weitere Definitionen

Planung ohne Detailkenntnissen

Ohne all

Unbekannter Seveso Betrieb

Achtungsabstand

Wohn-bereich

- •Unbekannte Substanz
- •Unbekannte Menge
- •Unbekannte technische Vorrichtungen zur Begrenzung
- •Unbekanntes Scenario
- •Unbekannte Ausbreitungsbedingung

- •Immissionswerte
- Verletzlichkeit

Konventionen aufgrund von Betriebserfahrungen

- Abstandsberechnungen für typisierte Quellterme bei Schlüsselstoffen
- Zuordnung zu Abstandsklassen
- Abgleich der in der ZEMA registrierten Ereignisse mit größeren Schäden in Bezug auf die angenommenen Quellterme.
- Freisetzung in der Regel durch Quellterm aus einer Austrittsfläche von 490 mm² (entspricht DN 25)
- Einhaltung Stand der Sicherheitstechnik und gute Managementpraxis
- Ausschluss von Spontanversagen von Behältern (einschließlich der Betrachtung von Trümmerwurf) oder vollständiger Abriss von großen Rohrleitungen, da hinreichend unwahrscheinlich.
- Abweichungen bei Einzelstoffen aufgrund spezifischer Betriebserfahrung, z.B. Phosgen, Acrolein, Benzol, Methanol, LPG.

Konventionen!

Angenommene Szenarien

Brände

- Wärmestrahlung bei Großbränden
- Keine toxische Effekte durch die Brandgase

Gaswolkenexplosionen

- Druckwellen durch Gaswolkenexplosionen mit unmittelbarer Zündung
- Kein Trümmerwurf

Freisetzung toxischer Stoffe

- Ausbreitung nach VDI-Modell RL 3783
- Mittlere Wetterlage
- Industriebebauung

Grenzwerte: Strahlung/Druck

StörfallV

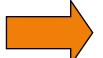
(Ernste Gefahr)

Wärmestrahlung: 10,5 kW /m² ("Tödliche Verbrennung in 40 s")

Explosionsdruck: 1,85 bar ("Lungenriss")

§ 2 Nr. 4a StörfallV Leben von Menschen k

Leben von Menschen bedroht Schwerwiegende Gesundheitsbeeinträchtigung (Irreversible Schäden) -Ein Mensch genügt-


Wärmestrahlung: 2,9 kW /m² ("Schmerzgrenze nach 30 s")

Explosionsdruck: 0,175 bar ("Trommelfellriss")

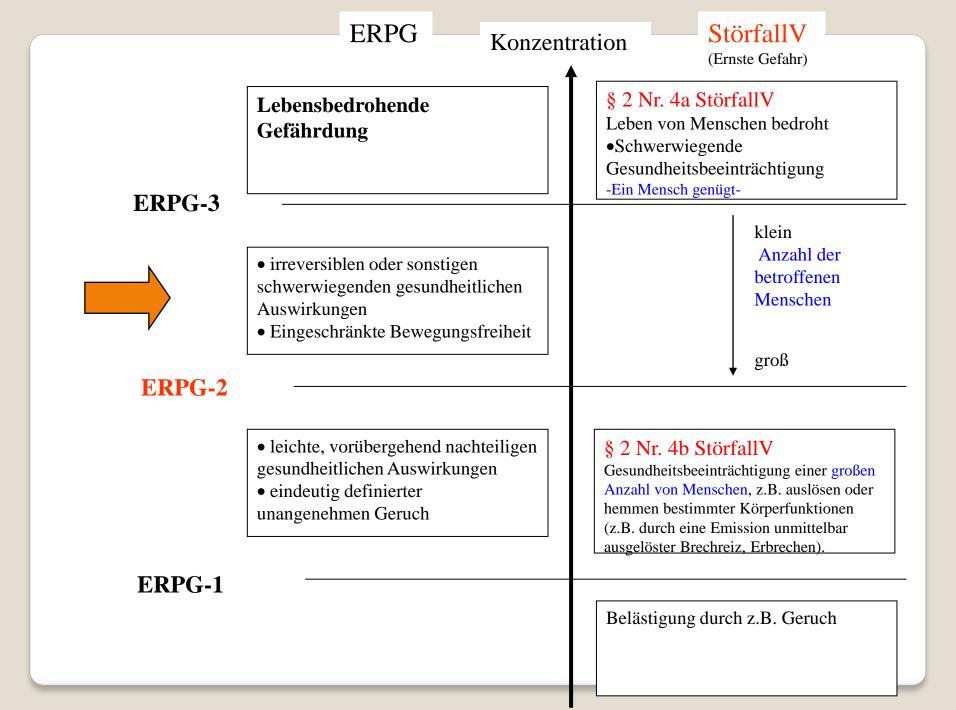
klein

Anzahl der betroffenen Menschen

groß

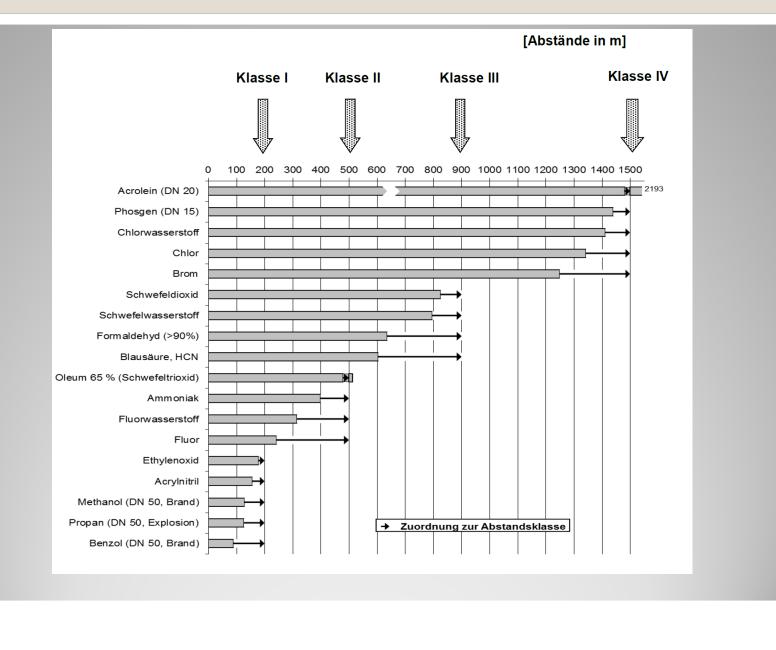
Wärmestrahlung: 1,6 kW/m² ("Nachteilige Wirkung")

Explosionsdruck: 0,1 bar ("Zerstörung gemauerter Wände")


§ 2 Nr. 4b StörfallV

Gesundheitsbeeinträchtigung einer großen Anzahl von Menschen, (Reversible Schäden)

Wärmestrahlung: 1,3 kW /m² ("Maximale Sonneneinstrahlung")


Explosionsdruck: 0,003 bar ("lauter Knall")

Belästigung

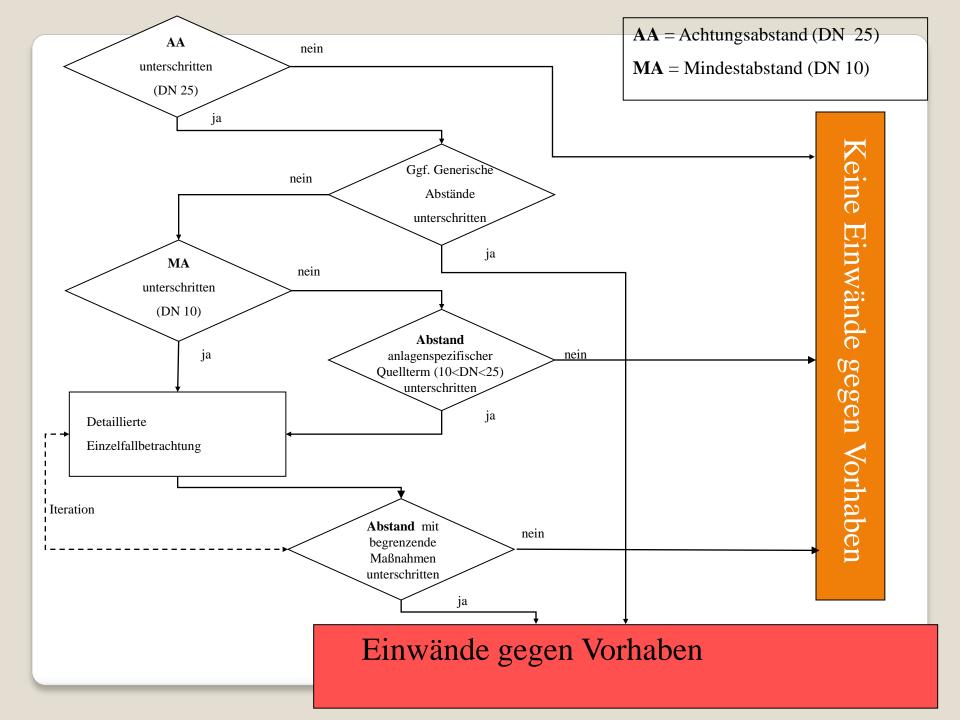
Empfohlene Endpunkte

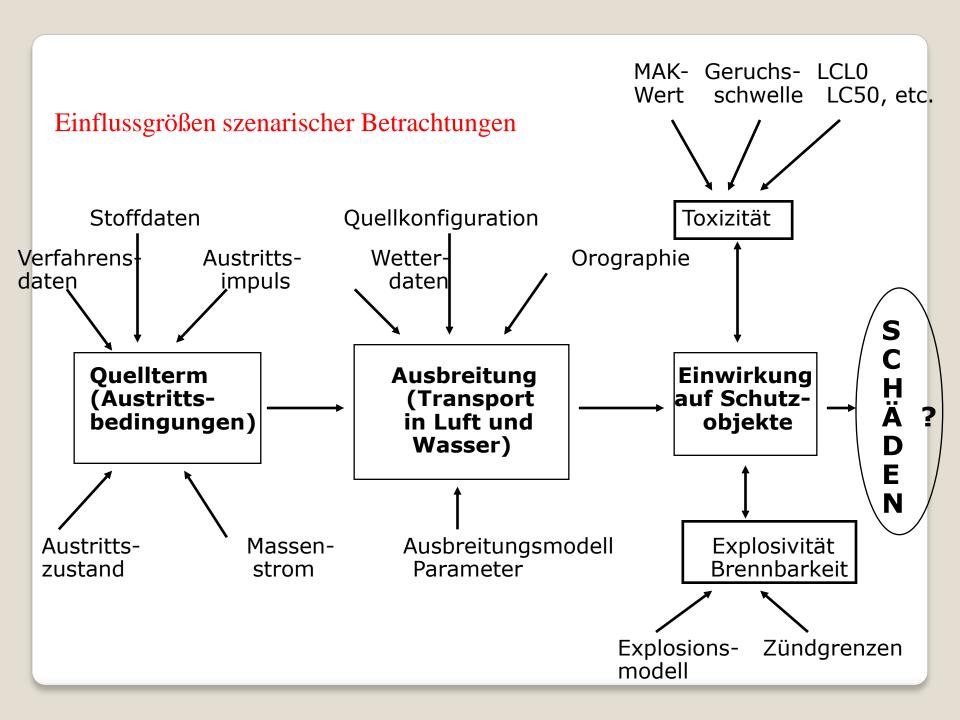
Belastungsart	Toleranzwert	Begründung
Wärme- strahlung	1,6 KW m ⁻²	Beginn nachteiliger Wirkungen auf Menschen
Explosionsdruck	0,1 bar	Beginn Zerstörung gemauerter Wände, Trommelfellriss bei Menschen
Toxische Belastung	ERPG-2 (stoff- spezifisch)	Beginn irreversibler und schwerwiegender Gesundheitsauswirkung

Planung mit Detailkenntnissen

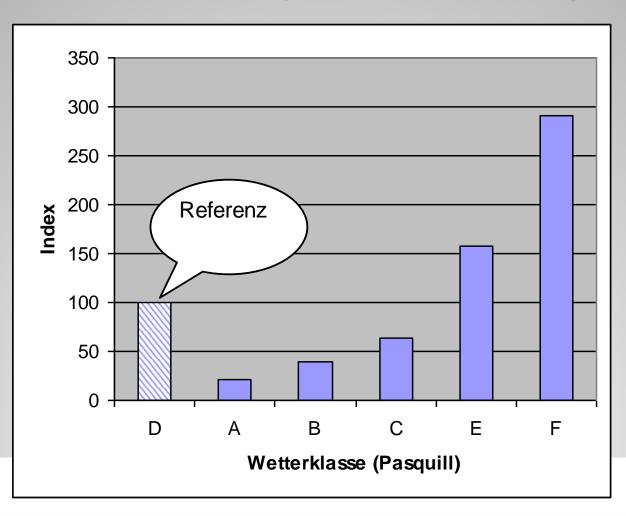
Seveso Betrieb Angemessener Abstand

it sail

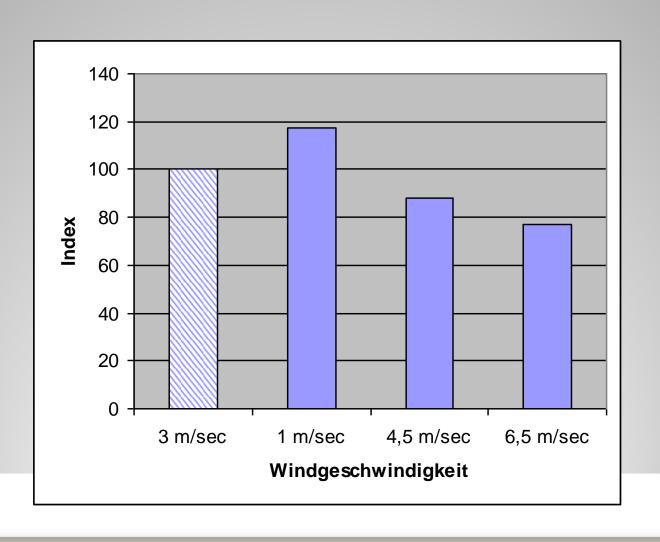

- •Bekannte Substanz
- •Bekannte Menge
- •Bekannte technische Vorrichtungen zur Begrenzung
- •Wahrscheinliches Scenario
- •Bekannte Ausbreitungsbedingungen

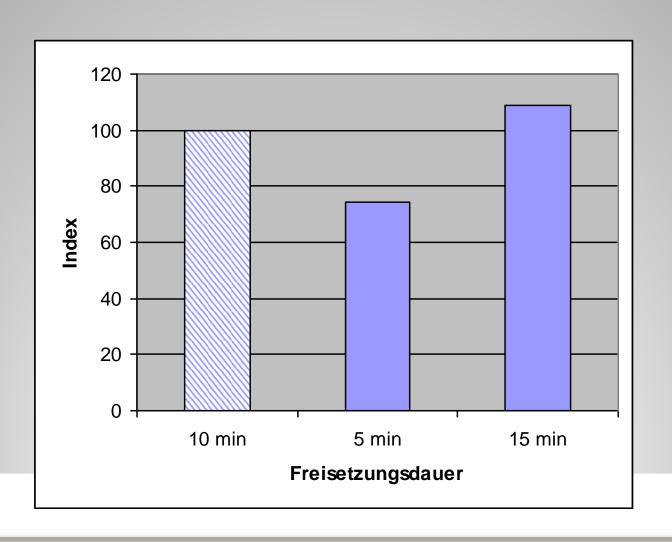

- •Immissionswerte
- Verletzlichkeit

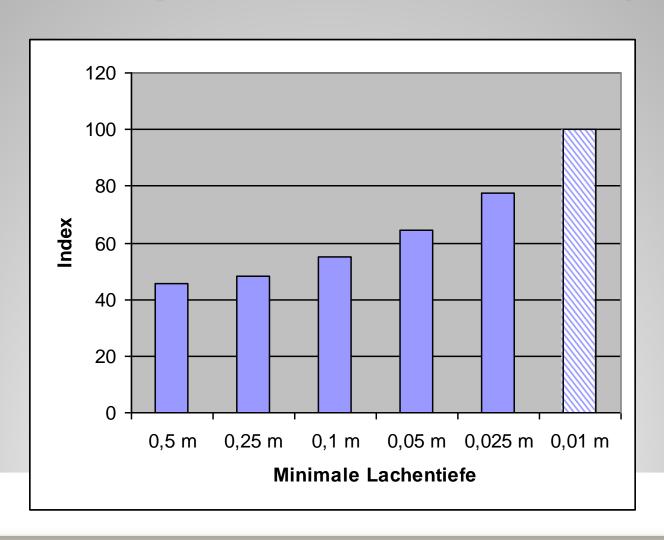
Berechnung nach dem Stand der Technik möglich!

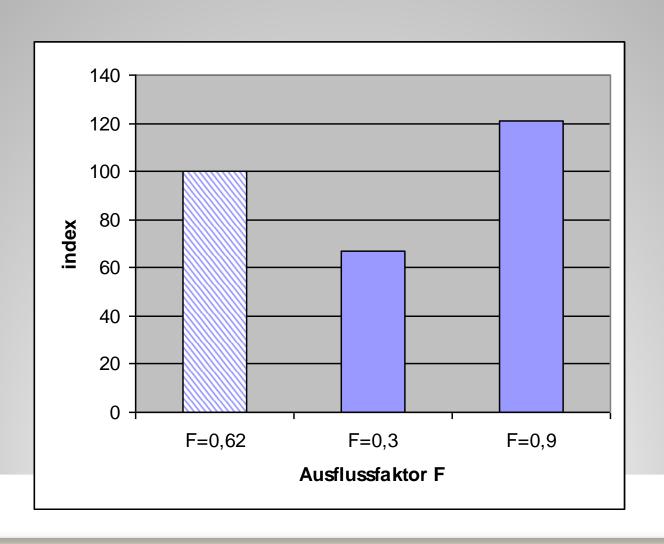

Empfehlungen für Einzelfallbetrachtung

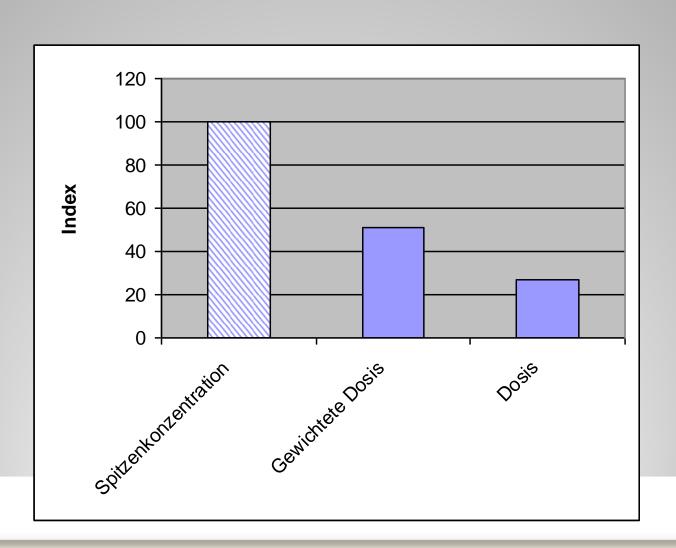
- Ist die Entfernung < Achtungsabstand
- → Einzelfallbetrachtung
- Anderen Rechtsvorschriften (z.B. SprengG) haben Vorrang
- Empfehlungen für Einzelfallbetrachtung:
 - Ausschluss Behälterbersten und Abriss sehr großer Rohrleitungen
 - Bei Lagerung Freisetzung des Inhalts eines Fasses/ Flasche
 - Annahme von Leckagen aus vorhandenen Rohrleitungen, Behältern, Sicherheitseinrichtungen etc. unter den Bedingungen:
 - In der Regel Leckfläche von 490 mm² (DN 25)
 - Berücksichtigung der tatsächlich vorhandenen Technik.
 - Als minimale Grundannahme Leckage von 80 mm² (DN 10)
 - Auswirkungsbegrenzende Maßnahmen sind zu berücksichtigen
 - statistisch häufigste Wetterlage (mittlere Wetterlage)
 - Beurteilungswerte ERPG2 / 1,6 kW/m² / 0,1 bar.

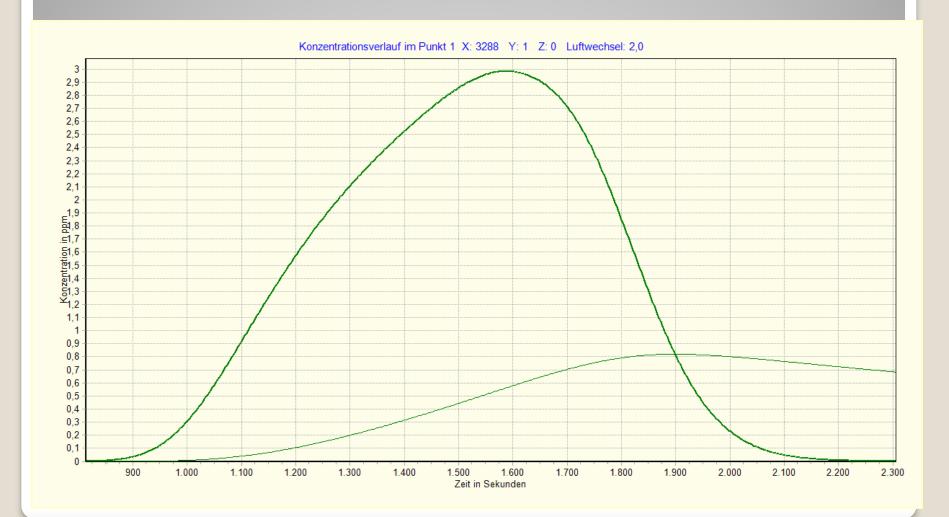



Relative Änderung durch Wetterklassen zur Referenzklasse D ("mittlere Wetterklasse")


Relative Änderung durch Windgeschwindigkeiten zur Referenzgeschwindigkeit v = 3 m/sec


Relative Änderung infolge der Freisetzungsdauer


Relative Änderung durch die Oberfläche der Verdunstungslache


Relative Änderung durch Ausflusskoeffizient F

Immissionsbewertung

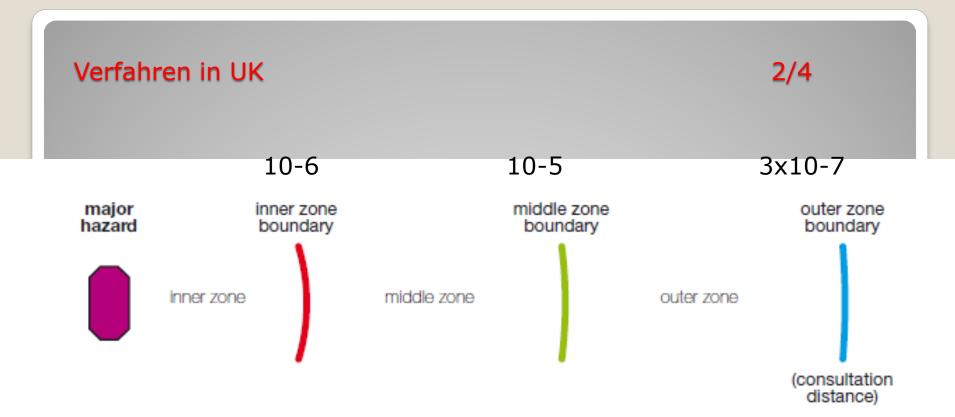
Konzentrationsverlauf am Aufpunkt ERPG 2 im Freien (steile Kurve) und in geschlossenen Räumen (flache Kurve), Luftwechselfaktor 2,0

Zulässigkeit in der LUP Kontrollzone

- In Deutschland keine rechtlich verbindlichen Vorgaben, allgemeines Abwägungsgebot im Rahmen der FNP und Bauplanung
- Modelle im Europäischen Ausland, teilweise gesetzlich festgelegt
- Zwei Beispiele aus UK und Italien

Verfahren in UK 1/4

Planung nach Zonen, die durch qualitativ definierte Risiken bestimmt werden.


Zonenfestlegung durch HSE

Keine Berücksichtigung von Umweltschäden

Beschreibung	Zone	Risiko-Grenzwert [Expositionen in 1 Million Jahre]
•Severe distress to all;	Innere	10
•A substantial number requiring medical attention;	Mittlere	1
•Some requiring hospital	Äußere	0,3
treatment, and		
•Some (about 1%) fatalities		

Quelle: HSE'S CURRENT APPROACH TO LAND USE PLANNING (LUP),

http://www.hse.gov.uk/landuseplanning/lupcurrent.pdf

- Innerhalb "consultant distance" Anfrage an HSE
- Verfahren bei Überschneidung der Zonengrenzen
- Zentrale Datenbank der HSE offen für alle Planungsbehörden

Verfahren in UK 3/4

Klassifizierung der Verletzlichkeit nach 4 Stufen in Entwicklungstypen, z.B. Arbeitsplätze, Parkplätze, Wohnbebauung, Hotel, Herberge, Ferienhäuser/-Wohnungen, Transportschwerpunkte, Publikumsverkehr innerhalb von Gebäuden, Publikumsverkehr in Freien, Fortbildungsstätten, Schulen, Gefängnisse

Stufe 1: Bezogen auf Beschäftigte innerhalb der Betriebe

Stufe 2: Bezogen auf die allgemeine Öffentlichkeit innerhalb

von Gebäuden

Stufe 3: Bezogen auf verletzlichen Mitglieder der Öffentlichkeit (Kinder, Bewegungsbehinderte, Wahrnehmungseingeschränkte)

Stufe 4: Größere Anzahl der Fälle der Stufen 3 und Stufe 2 im Freien.

Verfahren in UK 4/4

Entscheidungsmatrix

Sensitivity level	Development in Inner zone	Development in Middle zone	Development in Outer zone
1	DAA	DAA	DAA
2	AA	DAA	DAA
3	AA	AA	DAA
4	AA	AA	AA

DAA: (Do not Advise Against) = zulässig;

AA: (Advise Against) = unzulässig

- Deterministisches Verfahren durch Auswahl von Szenarien.
- Definierte Werte zur thermischen undToxischen Wirkung in 4 "Verletzungsklassen"
- 3. Differenzierte Festlegung von 6 "Verletzlichkeitsklassen"
- 4. Qualitative Abschätzung der Wahrscheinlichkeit und Zuordnung von 2 & 3 in einer Entscheidungsmatrix
- 5. Berücksichtigung von Umweltschäden

Verfahren in Italien

2/4

→ "Verletzungsklassen"

Scenario	high lethality	starting lethality	irreversible lesions	reversible lesions	Damages to structures / domino effects
Fire (stationary					
thermal radiation)	12,5 kW/m ²	7kW/m^2	5 kW/m^2	3 kW/m ²	12,5 kW/m ²
BLEVE/Fireball					
(variable thermal	fireball radius	350	200 kJ/m ²	125	200-800 m(**)
radiation)		kJ/m²		kJ/m²	
Flash-fire					
(instantaneous	LFL	1/2LFL			
thermal radiation)					
VCE (overpressure)	0,3 bar (0,6	0,14 bar	0,07 bar	0,03 bar	0,3 bar
	open spaces)				
Toxic release					
(absorbed dose)	$LC50^{30}$		IDLH ³¹		
	(30min,hmn)				

Quelle: Decree 9 Maggio 2001, ("Minimal Safety requirements for the urban and territorial planning in the areas subject to major accident risks") http://www.ambiente.it/impresa/legislazione/leggi/2001/dm9-5-2001.htm

Klasse A:

- Bereiche zum ständigem Aufenthalt von Personen mit Geschosszahl größer als 4,5 m3/m2
- Bewegungsbehinderten in Krankenhäusern, Krankenheime, Hospize, Asyle, Grundschulen, etc. mit mehr als 25 Betten oder 100 Personen anwesend
- Stätten zum Aufenthalt im Freien, z.B. Einkaufsläden, Märkte mit mehr als 500 Personen anwesend

Klasse B:

- Bereiche zum überwiegendem Aufenthalt von Personen mit Geschosszahl von 4,5 -1,5 m3/m2
- Bewegungsbehinderten in Krankenhäusern, Krankenheime, Hospize, Asyle, Grundschulen, etc. mit bis zu 25 Betten oder 100 Personen anwesend
- Stätten zum Aufenthalt im Freien, z.B. Einkaufsläden, Märkte mit bis zu 500 Personen anwesend
- Stätten zum Aufenthalt im geschlossenen Räumen, z.B. Einkaufszentren, Weiterführende Schulen, Universitäten, etc. mit mehr als 500 Personen anwesend
- Stätten mit vorübergehendem Aufenthalt von Personen, z.B. Versammlungsstätten, Sportstätten, Kirchen von mehr als 100 Personen (im Freien) oder 1000 Personen in geschlossenen Räumen.
- Bahn-/Busbahnhöfe, etc. mit mehr als 1000 Personen pro Tag

Klasse C:

- Bereiche zum überwiegendem Aufenthalt von Personen mit Geschosszahl von 1,5 -1,0 m3/m2
- Stätten zum Aufenthalt im geschlossenen Räumen, z.B. Einkaufszentren, Weiterführende Schulen, Universitäten, etc. mit bis zu 500 Personen anwesend
- Stätten mit vorübergehendem Aufenthalt von Personen, z.B. Versammlungsstätten, Sportstätten, Kirchen mit bis zu 100 Personen (im Freien) oder 1000 Personen in geschlossenen Räumen.
- Bahn-/Busbahnhöfe, etc. mit bis zu 1000 Personen pro Tag

Klasse D:

- Bereiche zum überwiegendem Aufenthalt von Personen mit Geschosszahl von 1,0 0,5 m3/m2
- Stätten mit weniger häufigem (monatlich) Publikumsverkehr, z.B. Ferienlager, Messen, Friedhöfe

Klasse E:

- Bereiche zum überwiegendem Aufenthalt von Personen mit Geschosszahl von kleiner als 0,5 m3/m2
- Industrieansiedlungen, Gewerbe, Landwirtschaft, Viehzucht

Klasse F:

- An Industrieansiedelung angrenzende Bereiche
- Industriebereiche, die wenig mit Beschäftigten besetzt sind.

Verfahren in Italien

4/4

Entscheidungsmatrix

Estimated d	amage (EFFECTS	categories)
-------------	---------	---------	-------------

	Estimated damage (EFFECTS categories)			
Frequency of the event (classes)	Elevated mortality	Mortality	Irreversible damage	Reversible damage
< 10 ⁻⁶	DEF	CDEF	BCDEF	ABCDEF
$10^{-4} - 10^{-6}$	EF	DEF	CDEF	BCDEF
$10^{-3} - 10^{-4}$	F	EF	DEF	CDEF
> 10 ⁻³	F	F	EF	DEF

Verletzlichkeit

Regel und Einzelfallbetrachtung

- ➤ Regeln auf Grund von Konventionen vereinfachen die Betrachtungsweise und erhöhen die Rechtssicherheit
- ➤ Regeln haben einen "Leitplankenfunktion"
- ➤In Einzelfallbetrachtung (EFB) sind grundsätzlich alle Beurteilungsfaktoren offen für die Erörterung
- ➤ EFB erfordert Transparenz, Transparenz erfordert Kommunikation.
- ➤ Ist EFB Grundlage einer Entscheidung mit Gemeinwohlcharakter
- → Kommunikation und Partizipation aller Beteiligten.

Kontakt

Dr. Hans-Joachim Uth Sachverständiger für chemische Anlagensicherheit Fasanenstrasse 48 10719 Berlin fon +49173 619 24 11

mailto:jochen.uth@arcor.de